DeepLearn 2022 Autumn
7th International School
on Deep Learning
Luleå, Sweden · October 17-21, 2022
Registration
Downloads
  • Call DeepLearn 2022 Autumn
  • Poster DeepLearn 2022 Autumn
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • News
  • Accommodation
  • Info
    • Luleå
    • Sponsoring
    • Code of conduct
    • Visa
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • News
  • Accommodation
  • Info
    • Luleå
    • Sponsoring
    • Code of conduct
    • Visa
    • Testimonials
irdta-deeplearn-sean-benson

Sean Benson

Netherlands Cancer Institute

[intermediate] Deep Learning for a Better Understanding of Cancer

Summary

My lectures will provide a brief introduction to computer vision and convolutional neural networks, before moving on to the challenges faced when training using medical imaging, namely heterogeneous datasets, the challenging dataset sizes and the relatively high expense of labels. I will move on to how semi-supervised and unsupervised methods are being used in combination with transfer learning in order to make the best use of available data and explain modern techniques for the combination of different data sources, with a focus on relevant clinical endpoints such as segmentation, tumour characterisation, and followup predictions.

Syllabus

  • Convolutional neural networks (CNNs)
  • Transfer learning techniques
  • Supervised and unsupervised loss functions
  • Application of CNNs to medical image segmentation
  • Tumour characterisation and classification
  • Data source combinations
  • Outcome and recurrence predictions

References

[1] R. A. Weinberg, The Biology of Cancer, 0 dr. W.W. Norton & Company, 2013 [Online]. Beschikbaar op: https://www.taylorfrancis.com/books/9781317963462. [Geraadpleegd: 17 oktober 2022]

[2] F. Cardoso e.a., ‘Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up’, Annals of Oncology, vol. 30, nr. 8, pp. 1194–1220, aug. 2019, doi: 10.1093/annonc/mdz173. [Online]. Beschikbaar op: https://linkinghub.elsevier.com/retrieve/pii/S0923753419312876. [Geraadpleegd: 17 oktober 2022]

[3] P. Herent e.a., ‘Detection and characterization of MRI breast lesions using deep learning’, Diagnostic and Interventional Imaging, vol. 100, nr. 4, pp. 219–225, apr. 2019, doi: 10.1016/j.diii.2019.02.008. [Online]. Beschikbaar op: https://linkinghub.elsevier.com/retrieve/pii/S2211568419300567. [Geraadpleegd: 17 oktober 2022]

[4] S. Woo, J. Park, J.-Y. Lee, en I. S. Kweon, ‘CBAM: Convolutional Block Attention Module’. arXiv, 18 juli 2018 [Online]. Beschikbaar op: http://arxiv.org/abs/1807.06521. [Geraadpleegd: 17 oktober 2022]

[5] L. Itti, C. Koch, en E. Niebur, ‘A model of saliency-based visual attention for rapid scene analysis’, IEEE Trans. Pattern Anal. Machine Intell., vol. 20, nr. 11, pp. 1254–1259, nov. 1998, doi: 10.1109/34.730558. [Online]. Beschikbaar op: http://ieeexplore.ieee.org/document/730558/. [Geraadpleegd: 17 oktober 2022]

[6] W. Jin, X. Li, en G. Hamarneh, ‘One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images’. arXiv, 11 juli 2021 [Online]. Beschikbaar op: http://arxiv.org/abs/2107.05047. [Geraadpleegd: 17 oktober 2022]

[7] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, en D. Batra, ‘Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization’, Int J Comput Vis, vol. 128, nr. 2, pp. 336–359, feb. 2020, doi: 10.1007/s11263-019-01228-7. [Online]. Beschikbaar op: http://arxiv.org/abs/1610.02391. [Geraadpleegd: 17 oktober 2022]

[8] G. Habib e.a., ‘Automatic Breast Lesion Classification by Joint Neural Analysis of Mammography and Ultrasound’. arXiv, 23 september 2020 [Online]. Beschikbaar op: http://arxiv.org/abs/2009.11009. [Geraadpleegd: 17 oktober 2022]

[9] M. T. Ribeiro, S. Singh, en C. Guestrin, ‘“Why Should I Trust You?”: Explaining the Predictions of Any Classifier’. arXiv, 9 augustus 2016 [Online]. Beschikbaar op: http://arxiv.org/abs/1602.04938. [Geraadpleegd: 17 oktober 2022]

[10] S. Lundberg en S.-I. Lee, ‘A Unified Approach to Interpreting Model Predictions’. arXiv, 24 november 2017 [Online]. Beschikbaar op: http://arxiv.org/abs/1705.07874. [Geraadpleegd: 17 oktober 2022]

[11] F. Milletari, N. Navab, en S.-A. Ahmadi, ‘V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation’. arXiv, 15 juni 2016 [Online]. Beschikbaar op: http://arxiv.org/abs/1606.04797. [Geraadpleegd: 17 oktober 2022]

[12] M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, en S. Duchesne, Red., Medical Image Computing and Computer Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I, vol. 10433. Cham: Springer International Publishing, 2017 [Online]. Beschikbaar op: https://link.springer.com/10.1007/978-3-319-66182-7. [Geraadpleegd: 17 oktober 2022]

[13] O. Ronneberger, P. Fischer, en T. Brox, ‘U-Net: Convolutional Networks for Biomedical Image Segmentation’. arXiv, 18 mei 2015 [Online]. Beschikbaar op: http://arxiv.org/abs/1505.04597. [Geraadpleegd: 17 oktober 2022]

[14] F. Isensee e.a., ‘nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation’. arXiv, 27 september 2018 [Online]. Beschikbaar op: http://arxiv.org/abs/1809.10486. [Geraadpleegd: 17 oktober 2022]

[15] D. Veiga-Canuto e.a., ‘Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images’, Cancers, vol. 14, nr. 15, p. 3648, jul. 2022, doi: 10.3390/cancers14153648. [Online]. Beschikbaar op: https://www.mdpi.com/2072-6694/14/15/3648. [Geraadpleegd: 17 oktober 2022]

[16] K. V. Sarma e.a., ‘Harnessing clinical annotations to improve deep learning performance in prostate segmentation’, PLoS ONE, vol. 16, nr. 6, p. e0253829, jun. 2021, doi: 10.1371/journal.pone.0253829. [Online]. Beschikbaar op: https://dx.plos.org/10.1371/journal.pone.0253829. [Geraadpleegd: 17 oktober 2022]

[17] X. Luo, J. Chen, T. Song, en G. Wang, ‘Semi-supervised Medical Image Segmentation through Dual-task Consistency’, AAAI, vol. 35, nr. 10, pp. 8801–8809, mei 2021, doi: 10.1609/aaai.v35i10.17066. [Online]. Beschikbaar op: https://ojs.aaai.org/index.php/AAAI/article/view/17066. [Geraadpleegd: 17 oktober 2022]

[18] S. Frank, ‘Tissue Segmentation from Whole-Slide Images Using Lightweight Neural Networks’, In Review, preprint, dec. 2020 [Online]. Beschikbaar op: https://www.researchsquare.com/article/rs-122564/v1. [Geraadpleegd: 17 oktober 2022]

[19] W.-Y. Chuang e.a., ‘Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning’, Cancers, vol. 12, nr. 2, p. 507, feb. 2020, doi: 10.3390/cancers12020507. [Online]. Beschikbaar op: https://www.mdpi.com/2072-6694/12/2/507. [Geraadpleegd: 17 oktober 2022]

[20] B. Ehteshami Bejnordi e.a., ‘Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer’, JAMA, vol. 318, nr. 22, p. 2199, dec. 2017, doi: 10.1001/jama.2017.14585. [Online]. Beschikbaar op: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585. [Geraadpleegd: 17 oktober 2022]

[21] K. Ravichandran, N. Braman, A. Janowczyk, en A. Madabhushi, ‘A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI’, in Medical Imaging 2018: Computer-Aided Diagnosis, Houston, United States, feb. 2018, p. 11, doi: 10.1117/12.2294056 [Online]. Beschikbaar op: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10575/2294056/A-deep-learning-classifier-for-prediction-of-pathological-complete-response/10.1117/12.2294056.full. [Geraadpleegd: 17 oktober 2022]

[22] Y. Zhang e.a., ‘Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers’, Eur Radiol, vol. 31, nr. 4, pp. 2559–2567, apr. 2021, doi: 10.1007/s00330-020-07274-x. [Online]. Beschikbaar op: https://link.springer.com/10.1007/s00330-020-07274-x. [Geraadpleegd: 17 oktober 2022]

[23] Q. Sun e.a., ‘Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region’, Front. Oncol., vol. 10, p. 53, jan. 2020, doi: 10.3389/fonc.2020.00053. [Online]. Beschikbaar op: https://www.frontiersin.org/article/10.3389/fonc.2020.00053/full. [Geraadpleegd: 17 oktober 2022]

[24] S. Gupta, N. S. Punn, S. K. Sonbhadra, en S. Agarwal, ‘MAG-Net: Multi-task attention guided network for brain tumor segmentation and classification’, vol. 13147, 2021, pp. 3–15 [Online]. Beschikbaar op: http://arxiv.org/abs/2107.12321. [Geraadpleegd: 17 oktober 2022]

[25] R. M. Jimenez-Rodriguez e.a., ‘Organ Preservation in Patients with Rectal Cancer Treated with Total Neoadjuvant Therapy’, Diseases of the Colon & Rectum, vol. 64, nr. 12, pp. 1463–1470, dec. 2021, doi: 10.1097/DCR.0000000000002122. [Online]. Beschikbaar op: https://journals.lww.com/10.1097/DCR.0000000000002122. [Geraadpleegd: 17 oktober 2022]

[26] X. He, J. Ji, M. Tian, F. J. Esteva, G. N. Hortobagyi, en S.-C. J. Yeung, ‘Long-Term Survival Analysis of Adjuvant Chemotherapy with or without Trastuzumab in Patients with T1, Node-Negative HER2-Positive Breast Cancer’, Clinical Cancer Research, vol. 25, nr. 24, pp. 7388–7395, dec. 2019, doi: 10.1158/1078-0432.CCR-19-0463. [Online]. Beschikbaar op: https://aacrjournals.org/clincancerres/article/25/24/7388/82332/Long-Term-Survival-Analysis-of-Adjuvant. [Geraadpleegd: 17 oktober 2022]

[27] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, en Y. Kluger, ‘DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network’, BMC Med Res Methodol, vol. 18, nr. 1, p. 24, dec. 2018, doi: 10.1186/s12874-018-0482-1. [Online]. Beschikbaar op: https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0482-1. [Geraadpleegd: 17 oktober 2022]

[28] S.-C. Huang, A. Pareek, S. Seyyedi, I. Banerjee, en M. P. Lungren, ‘Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines’, npj Digit. Med., vol. 3, nr. 1, p. 136, dec. 2020, doi: 10.1038/s41746-020-00341-z. [Online]. Beschikbaar op: https://www.nature.com/articles/s41746-020-00341-z. [Geraadpleegd: 17 oktober 2022]

[29] X. Wang e.a., ‘Combining Radiology and Pathology for Automatic Glioma Classification’, Front. Bioeng. Biotechnol., vol. 10, p. 841958, mrt. 2022, doi: 10.3389/fbioe.2022.841958. [Online]. Beschikbaar op: https://www.frontiersin.org/articles/10.3389/fbioe.2022.841958/full. [Geraadpleegd: 17 oktober 2022]

[30] R. S. Vanguri e.a., ‘Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer’, Nat Cancer, aug. 2022, doi: 10.1038/s43018-022-00416-8. [Online]. Beschikbaar op: https://www.nature.com/articles/s43018-022-00416-8. [Geraadpleegd: 17 oktober 2022]

Pre-requisites

Linear algebra, probability, statistics, experience with medical data formats desirable.

Short bio

I am a research scientist in the Radiology Department of the Netherlands Cancer Institute where I lead a team of doctoral researchers developing deep learning models using multi-modal medical imaging to predict treatment response and identify features that can be used to predict regrowth at the earliest possible opportunity. I received my PhD from the University of Edinburgh working on the LHCb experiment of CERN, where my research focused on statistical analyses of LHC data including the development of AI models to isolate interesting decay signatures. After CERN and Marie-Curie fellowships where a large part of my research centred on the development of real-time analysis infrastructure and the design of fast models for real-time evaluation, I worked as a Senior Data Scientist at KPMG where I developed and deployed explainable computer vision and natural language processing models before joining the Radiology Department of the Netherlands Cancer Institute.

Other Courses

irdta-deeplearn-tomasso-dorigoTommaso Dorigo
OLYMPUS DIGITAL CAMERAElaine O. Nsoesie
irdta-deeplearn-thomas-breuelThomas Breuel
irdta-deeplearn-hao-chenHao Chen
irdta-deeplearn-jianlin-chengJianlin Cheng
Nadya ChernyavskayaNadya Chernyavskaya
Efstratios GavvesEfstratios Gavves
irdta-deeplearn-quanquan-guQuanquan Gu
irdta-deeplearn-jiawei-hanJiawei Han
irdta-deeplearn-awni-hannunAwni Hannun
Tin Kam HoTin Kam Ho
irdta-deeplearn-timothy-hospedalesTimothy Hospedales
irdta-deeplearn-shih-chieh-hsuShih-Chieh Hsu
irdta-deeplearn-tatiana-likhomanenkoTatiana Likhomanenko
irdta-deeplearn-othmane-rifkiOthmane Rifki
irdta-deeplearn-mayank-vatsaMayank Vatsa
Yao WangYao Wang
irdta-deeplearn-zichen-wangZichen Wang
irdta-deeplearn-alper-yilmazAlper Yilmaz

DeepLearn 2022 Autumn

CO-ORGANIZERS

Luleå University of Technology

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Winter – 8th International School on Deep Learning
Past links
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo