DeepLearn 2023 Summer
10th International Gran Canaria School
on Deep Learning
Las Palmas de Gran Canaria, Spain · July 17-21, 2023
Registration
Downloads
  • Call DeepLearn 2023 Summer
  • Poster DeepLearn 2023 Summer
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Restaurants
    • ULPGC students and staff
    • Visa
    • Code of conduct
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Restaurants
    • ULPGC students and staff
    • Visa
    • Code of conduct
    • Testimonials
Marcus Liwicki

Marcus Liwicki

Luleå University of Technology

[intermediate/advanced] Methods for Learning with Few Data

Summary

Deep Neural Networks are data hungry, they require millions of labelled data in order to work! — Really? — The last decade has shown useful approaches to work with less labelled data, either by having a lot of data from a similar domain or by letting the network learn meaningful representations without explicit supervision. This tutorial first brings self-supervised learning to a general perspective of learning with few data, covering typical transfer learning and auto-encoder approaches or perceptual loss. Furthermore, the tutorial will investigate some typical (mis-) conceptions of these methods and suggest some practical tips on how to learn with few data. By participating in this tutorial, you will get deep insights in representation learning and learning with few data, as well as practical tools to start working on data in your own domain.

Syllabus

  • Introduction
    • Motivation
    • Examples
    • Background
  • Problem formulation
    • Learning with few data
    • Priors
    • Approaches
  • End to end learning
    • Transfer learning
    • Clustering
  • Representation learning
    • Auto-encoding
    • Contrastive learning
  • Comparative summary
  • Remarks on contrastive learning
    * and surprises in-between

References

A Survey on Deep Transfer Learning – 2018

Deep Clustering for Unsupervised Learning of Visual Features – 2018

Variational Autoencoder for Deep Learning of Images, Labels and Captions – 2016

A Pitfall of Unsupervised Pre-Training – 2017

SimCLR – July 2020, SwAV – October 2020

And more references will be given directly during the tutorial and in the slides.

Pre-requisites

Foundations of machine learning and neural networks (including backpropagation). Linear algebra. Basics of deep learning (CNN, ResNet, DenseNet, auto-encoders). Other data processing algorithms (PCA, LDA).

Short bio

Marcus Liwicki received his M.S. degree in Computer Science from the Free University of Berlin, Germany, in 2004, his PhD degree from the University of Bern, Switzerland, in 2007, and his habilitation degree at the Technical University of Kaiserslautern, Germany, in 2011. Currently he is chaired professor in Machine Learning and vice-rector for AI at Luleå University of Technology. His research interests include machine learning, pattern recognition, artificial intelligence, human computer interaction, digital humanities, knowledge management, ubiquitous intuitive input devices, document analysis, and graph matching. From October 2009 to March 2010 he visited Kyushu University (Fukuoka, Japan) as a research fellow (visiting professor), supported by the Japanese Society for the Promotion of Science. In 2015, at the young age of 32, he received the ICDAR young investigator award, a bi-annual award acknowledging outstanding achievements in pattern recognition for researchers up to the age of 40.

Other Courses

Alex VoznyyAlex Voznyy
aidong-zhang‪Aidong Zhang
eneko-agirreEneko Agirre
Pierre BaldiPierre Baldi
Natália CordeiroNatália Cordeiro
Daniel CremersDaniel Cremers
Stefano GiaguStefano Giagu
Georgios GiannakisGeorgios Giannakis
Chen Change LoyChen Change Loy
Deepak PathakDeepak Pathak
Björn SchullerBjörn Schuller
Amos StorkeyAmos Storkey
Ponnuthurai N. SuganthanPonnuthurai N. Suganthan
savannah-thaisSavannah Thais
Lihi Zelnik-ManorLihi Zelnik-Manor

DeepLearn 2023 Summer

CO-ORGANIZERS

Universidad de Las Palmas de Gran Canaria

Universitat Rovira i Virgili

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • BigDat 2023 Summer – 7th International School on Big Data
Past links
  • DeepLearn 2023 Spring
  • DeepLearn 2023 Winter
  • DeepLearn 2022 Autumn
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2022. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo