DeepLearn 2022 Summer
6th International Gran Canaria School
on Deep Learning
Las Palmas de Gran Canaria, Spain · July 25-29, 2022
Registration
Downloads
  • Call DeepLearn 2022 Summer
  • Poster DeepLearn 2022 Summer
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • News
  • Accommodation
  • Info
    • Sponsoring
    • Code of conduct
    • Visa
  • Home
  • Schedule
  • Lecturers
  • News
  • Accommodation
  • Info
    • Sponsoring
    • Code of conduct
    • Visa
Wojciech Samek

Wojciech Samek

Fraunhofer Heinrich Hertz Institute

[introductory/intermediate] Explainable AI: Concepts, Methods and Applications

Summary

Being able to explain the predictions of machine learning models is important in critical applications such as medical diagnosis or autonomous systems. The rise of deep nonlinear ML models has led to massive gains in terms of predictivity. Yet, we do not want such high accuracy to come at the expense of explainability. As a result, the field of Explainable AI (XAI) has emerged and has produced a collection of methods that are capable of explaining complex and diverse ML models. This tutorial will give a structured overview of the approaches that have been proposed for XAI. In particular, it will present motivations for such methods, their advantages/disadvantages and their theoretical underpinnings. It will also show how these techniques can be extended and applied in a way that they deliver maximum usefulness in real-world scenarios.

Syllabus

The first part of the tutorial will present motivations for XAI, in particular it will give examples where simple non-XAI validation techniques can strongly mislead the user in his assessment of the model performance. The second part will present several XAI methods that successfully cope with highly nonlinear ML models used in practice and discuss their theoretical underpinnings. The third part will present recent developments in XAI.

The topics covered are:

  • Motivations: Black-box models and the “Clever Hans” effect
  • Explainable AI: methods for explaining deep neural networks
  • Unifying views on explanation methods & theoretical underpinnings
  • Evaluating explanations
  • Applications of XAI
  • Explaining beyond deep networks, single-feature attributions, and individual predictions
  • XAI-Based model improvement

References

http://www.heatmapping.org

W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller. Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications, Proceedings of the IEEE, 109(3):247-278, 2021. https://doi.org/10.1109/JPROC.2021.3060483

G Montavon, W Samek, KR Müller. Methods for Interpreting and Understanding Deep Neural Networks, Digital Signal Processing, 73:1-15, 2018. https://doi.org/10.1016/j.dsp.2017.10.011

G Montavon, S Lapuschkin, A Binder, W Samek, KR Müller. Explaining NonLinear Classification Decisions with Deep Taylor Decomposition, Pattern Recognition, 65:211–222, 2017. http://dx.doi.org/10.1016/j.patcog.2016.11.008

L Arras, A Osman, W Samek. CLEVR-XAI: A Benchmark Dataset for the Ground Truth Evaluation of Neural Network Explanations, Information Fusion, 2022. https://doi.org/10.1016/j.inffus.2021.11.008

J Sun, S Lapuschkin, W Samek, A Binder. Explain and Improve: LRP-Inference Fine Tuning for Image Captioning Models, Information Fusion, 77:233-246, 2022. https://doi.org/10.1016/j.inffus.2021.07.008

CJ Anders, L Weber, D Neumann, W Samek, KR Müller, S Lapuschkin. Finding and Removing Clever Hans: Using Explanation Methods to Debug and Improve Deep Models, Information Fusion, 77:261-295, 2021. https://doi.org/10.1016/j.inffus.2021.07.015

W Samek, G Montavon, A Vedaldi, LK Hansen, KR Müller (Eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS, 11700, 2019. https://link.springer.com/book/10.1007/978-3-030-28954-6

C Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1, 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

S M Lundberg, G Erion, H Chen et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell 2, 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9

F Doshi-Velez, B Kim. Towards A Rigorous Science of Interpretable Machine Learning. arXiv:1702.08608. https://arxiv.org/abs/1702.08608

P Schramowski, W Stammer, S Teso, S. et al. Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat Mach Intell 2, 476–486 (2020). https://doi.org/10.1038/s42256-020-0212-3

Pre-requisites

Basic understanding of machine learning and deep learning.

Short bio

Wojciech Samek is head of the Department of Artificial Intelligence and the Explainable AI Group at Fraunhofer Heinrich Hertz Institute (HHI), Berlin, Germany. He studied computer science at Humboldt University of Berlin, Heriot-Watt University and University of Edinburgh and received the Dr. rer. nat. degree with distinction from the Technical University of Berlin in 2014. During his studies he was awarded scholarships from the German Academic Scholarship Foundation and the DFG Research Training Group GRK 1589/1, and was a visiting researcher at NASA Ames Research Center, Mountain View, USA. Wojciech is associated faculty at the BIFOLD – Berlin Institute for the Foundation of Learning and Data, the ELLIS Unit Berlin and the DFG Graduate School BIOQIC, and member of the scientific advisory board of IDEAS NCBR. Furthermore, he is an editorial board member of PLoS ONE, Pattern Recognition and IEEE TNNLS and an elected member of the IEEE MLSP Technical Committee. He is recipient of multiple best paper awards, including the 2020 Pattern Recognition Best Paper Award, and part of the expert group developing the ISO/IEC MPEG-17 NNR standard. He is the leading editor of the Springer book “Explainable AI: Interpreting, Explaining and Visualizing Deep Learning” and organizer of various special sessions, workshops and tutorials on topics such as explainable AI, neural network compression, and federated learning. Wojciech has co-authored more than 150 peer-reviewed journal and conference papers; some of them listed as “Highly Cited Papers” (i.e., top 1%) in the field of Engineering.

Other Courses

Wahid BhimjiWahid Bhimji
zyro-imageJoachim M. Buhmann
deeplearn-kate-saenkoKate Saenko
Arindam BanerjeeArindam Banerjee
deeplearn-pierre-baldiPierre Baldi
Mikhail BelkinMikhail Belkin
deeplearn-arthur-grettonArthur Gretton
deeplearn-philip-isolaPhillip Isola
Mohit IyyerMohit Iyyer
Irwin King 2Irwin King
Tor LattimoreTor Lattimore
Vincent LepetitVincent Lepetit
Dimitris N. MetaxasDimitris N. Metaxas
Sean MeynSean Meyn
deeplearn-louis-philippe-morencyLouis-Philippe Morency
Clara I. SánchezClarisa Sánchez
Björn W. SchullerBjörn W. Schuller
Jonathon ShlensJonathon Shlens
deeplearn-johan-suykensJohan Suykens
deeplearn-murat-tekalpA. Murat Tekalp
deeplearn-tkatchenkoAlexandre Tkatchenko
Li XiongLi Xiong
deeplearn-ming-yuanMing Yuan

DeepLearn 2022 Spring

CO-ORGANIZERS

Universidad de Las Palmas de Gran Canaria

Universitat Rovira i Virgili

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Winter– 8th International School on Deep Learning
  • DeepLearn 2022 Autumn – 7th International School on Deep Learning
Past links
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo