DeepLearn 2023 Spring
9th International School
on Deep Learning
Bari, Italy · April 03-07, 2023
Registration
Downloads
  • Call DeepLearn 2023 Spring
  • Poster DeepLearn 2023 Spring
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
Bart ter Haar Romeny

Bart ter Haar Romeny

Eindhoven University of Technology

[intermediate/advanced] Explainable Deep Learning from First Principles

Summary

The tutorial consists of three parts. We start with a principled view on deep neural nets, the neuro-mathematics of self-organization and optimal representations. We discuss an elegant ‘first principles’ model for the first stages of supervised deep learning. The operators are differential operators, performing a Taylor expansion/description of the local structure. This will give us a solid geometric basis for the first layers in both CNN and vision. We derive convolution from first principles, construct a visually guided self-driving car and explain classification networks in detail.

The second part gives a briefing on modern visual neuroscience: brain imaging techniques, the connectome and function of the many cells and circuits in the retina and visual cortex, and the brain pathways for face recognition. We will exploit brain’s strategies to conserve energy.

The third part focuses on explaining the mathematics behind a range of applications in medical image analysis. We conclude with a surprising mathematical model for the now so popular GANs, with a focus on face and face manipulation.

Everything will be presented with LIVE CODING. For all topics discussed, the full source code and all datasets will be made available to the attendants.

Syllabus

  • Geometric models from first principles for deep learning
  • Learning from the brain: state-of-the-art in vision neuroscience
  • Bridging neuroscience and deep learning: applications, GANs, face representation

References

ter Haar Romeny, B.M., Introduction to Artificial Intelligence in Medicine, in: Artificial Intelligence in Medicine (N. Lidströmer and H. Ashrafian, Eds.), Springer-Nature, 2022. ISBN 978-3-030-64572-4.

Bernard, E., Introduction to Machine Learning. Wolfram Media Inc. Free book text and full Mathematica source code: www.wolfram.com/language/introduction-machine-learning/. Best book I know to get hands-on experience and deep understanding quickly.

ter Haar Romeny, B. M., Bekkers, E. J., Zhang, J., Abbasi-Sureshjani, S., Huang, F., Duits, R. et al., Brain-inspired algorithms for retinal image analysis. Machine Vision and Applications, 27(8), 1117-1135, 2016.

ter Haar Romeny, B. M., A geometric model for the functional circuits of the visual front-end. International Workshop on Brain-Inspired Computing. Lecture Notes in Computer Science, vol. 8603, pp 35-50. Springer, Cham, 2013.

Vidal, R., Ma, Y. and Sastry, S.S., Generalized principal component analysis (Vol. 5). New York: Springer, 2016.

Pre-requisites

Basic knowledge of deep learning applied to computer vision. Basic knowledge of linear algebra and calculus. The lectures are given as computational essays in Mathematica Desktop, which makes the ‘playing with math and data’ not only very intuitive and instructive, but also surprisingly visual, 21st century coding for humans, and interactive.

Short bio

https://scholar.google.com/citations?user=SAhuln0AAAAJ&hl=en

https://www.linkedin.com/in/bartterhaarromeny/

Long biography: www.romeny.info

Prof. Bart M. ter Haar Romeny (1952) is emeritus professor in Biomedical Image Analysis at Eindhoven University of Technology in the Netherlands. He obtained his MSc in Applied Physics from Delft University of Technology and PhD from Utrecht University.

He worked his whole career on biologically inspired medical image analysis algorithms, especially for computer-aided diagnosis (cancer, heart, brain, diabetes), image guided neurosurgery and visualization of brain connectivity from MRI diffusion tensor imaging. The focus is on multi-scale geometric modelling. He founded the SSVM (Scale-Space and Variational Methods) conference series, and led the RetinaCheck project, a large international AI-based retinal image screening program for diabetes. He published over 250 papers, 12 books and book chapters, and 3 patents. He is a frequent keynote speaker and awarded teacher.

Till mid 2022 he was President of the Dutch Society for Pattern Recognition and Image Processing and has been President of the Dutch Society for Biophysics & Biomedical Engineering and the Dutch Society of Clinical Physics. He is reviewer for many journals, conferences and science foundations, and organized many international Summer Schools. Prof. Romeny is IEEE EMBS Distinguished Lecturer, Senior Member of IEEE, Fellow of EAMBES, Governing Board member of IAPR, visiting professor at the Chinese Academy of Sciences, distinguished professor at Northeastern University, Shenyang-China, and Honorary Chair Professor at NTUST, Taiwan.

Website

The lecturer has prepared this website describing what he will talk about:

http://neuromath.net/DeepLearnSpring2023/

Other Courses

Babak Ehteshami BejnordiBabak Ehteshami Bejnordi
speakers-gleyzerSergei V. Gleyzer
speakers-kumarVipin Kumar
speakers-goldbergerJacob Goldberger
Christoph LampertChristoph Lampert
speakers-jingbianYingbin Liang
Xiaoming LiuXiaoming Liu
Michael MahoneyMichael Mahoney
Liza MijovicLiza Mijovic
William S. NobleWilliam S. Noble
Bhiksha RajBhiksha Raj
Holger Rauhut‪Holger Rauhut
Tara SainathTara Sainath
Martin SchultzMartin Schultz
Adi Laurentiu TarcaAdi Laurentiu Tarca
Emma TolleyEmma Tolley
Michalis VazirgiannisMichalis Vazirgiannis
Atlas WangAtlas Wang
Guo-Wei WeiGuo-Wei Wei
Lei XingLei Xing
Xiaowei XuXiaowei Xu

DeepLearn 2023 Spring

CO-ORGANIZERS

Department of Computer Science
University of Bari “Aldo Moro”

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Summer – 10th International Gran Canaria School on Deep Learning
  • BigDat 2023 Summer – 7th International School on Big Data

Photos by: Ph. Eufemia Lella

Past links
  • DeepLearn 2023 Winter
  • DeepLearn 2022 Autumn
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo