DeepLearn 2023 Spring
9th International School
on Deep Learning
Bari, Italy · April 03-07, 2023
Registration
Downloads
  • Call DeepLearn 2023 Spring
  • Poster DeepLearn 2023 Spring
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
Guo-Wei Wei

Guo-Wei Wei

Michigan State University

[introductory/advanced] Discovering the Mechanisms of SARS-CoV-2 Evolution and Transmission [virtual]

Summary

Discovering the mechanisms of SARS-CoV-2 evolution and transmission is one of the greatest challenges of our time. By integrating artificial intelligence (AI), viral genomes isolated from patients, tens of thousands of mutational data, biophysics, bioinformatics, and algebraic topology, the SARS-CoV-2 evolution was revealed to be governed by infectivity-based natural selection in early 2020 (J. of Mole. Biol. 2020, 432, 5212-5226). Two key mutation sites, L452 and N501 on the viral spike protein receptor-binding domain (RBD), were predicted in summer 2020, long before they occur in prevailing variants Alpha, Beta, Gamma, Delta, Kappa, Theta, Lambda, Mu, and Omicron. Our recent studies identified a new mechanism of natural selection: antibody resistance (J. Phys. Chem. Lett. 2021, 12, 49, 11850–11857). AI-based forecasting of Omicron’s infectivity, vaccine breakthrough, and antibody resistance was later nearly perfectly confirmed by experiments (J. Chem. Inf. Model. 2022, 62, 2, 412–422). The replacement of dominant BA.1 by BA.2 in later March was foretold in early February (J. Phys. Chem. Lett. 2022, 13, 17, 3840–3849). On May 1, 2022, we projected Omicron BA.4 and BA.5 to become the new dominating COVID-19 variants (arXiv:2205.00532). This prediction became reality in late June. Our models accurately forecast mutational impacts on the efficacy of monoclonal antibodies (mAbs).

Syllabus

Part 1: Introduction: SARS-CoV-2 and COVID-19.

Part 2: Methods: Genotyping, biophysics, deep learning, and mathematics.

Part 3: Results: SARS-CoV-2 variant modelling and prediction.

References

https://users.math.msu.edu/users/weig/paper/p246.pdf

https://users.math.msu.edu/users/weig/paper/p272.pdf

https://users.math.msu.edu/users/weig/paper/p279.pdf

https://users.math.msu.edu/users/weig/paper/p285.pdf

https://users.math.msu.edu/users/weig/paper/p289.pdf

Pre-requisites

Basic machine learning, basic SARS-CoV-2 or COVID-19, and basic mathematics.

Short bio

Guowei Wei earned his Ph. D. degree from the University of British Columbia in 1996. He was awarded a postdoctoral fellowship from the NSERC of Canada to pursue his postdoctoral work at the University of Houston. In 1998, he joined the faculty of the National University of Singapore and was promoted to Associate Professor in 2001. In 2002, he relocated to Michigan State University, where he is an MSU Foundation Professor of Mathematics, Electrical and Computer Engineering, and Biochemistry and Molecular Biology. His current research interests include mathematical biosciences, deep learning, drug discovery, and computational geometry, topology, and graphs. Dr. Wei has served extensively in a wide variety of national and international panels, committees, and journal editorships. His work was reported in numerous news and media articles.

Other Courses

Babak Ehteshami BejnordiBabak Ehteshami Bejnordi
speakers-gleyzerSergei V. Gleyzer
speakers-kumarVipin Kumar
speakers-goldbergerJacob Goldberger
Christoph LampertChristoph Lampert
speakers-jingbianYingbin Liang
Xiaoming LiuXiaoming Liu
Michael MahoneyMichael Mahoney
Liza MijovicLiza Mijovic
William S. NobleWilliam S. Noble
Bhiksha RajBhiksha Raj
Holger Rauhut‪Holger Rauhut
Bart ter Haar RomenyBart ter Haar Romeny
Tara SainathTara Sainath
Martin SchultzMartin Schultz
Adi Laurentiu TarcaAdi Laurentiu Tarca
Emma TolleyEmma Tolley
Michalis VazirgiannisMichalis Vazirgiannis
Atlas WangAtlas Wang
Lei XingLei Xing
Xiaowei XuXiaowei Xu

DeepLearn 2023 Spring

CO-ORGANIZERS

Department of Computer Science
University of Bari “Aldo Moro”

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Summer – 10th International Gran Canaria School on Deep Learning
  • BigDat 2023 Summer – 7th International School on Big Data

Photos by: Ph. Eufemia Lella

Past links
  • DeepLearn 2023 Winter
  • DeepLearn 2022 Autumn
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo