DeepLearn 2023 Spring
9th International School
on Deep Learning
Bari, Italy · April 03-07, 2023
Registration
Downloads
  • Call DeepLearn 2023 Spring
  • Poster DeepLearn 2023 Spring
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
Michael Mahoney

Michael Mahoney

University of California Berkeley

[intermediate] Practical Neural Network Theory: From Statistical Mechanics Basics to Working with State of the Art Models

Summary

The presentation will cover empirical results on state of the art neural network models in computer vision, natural language processing, and related areas; statistical mechanics based phenomenological theory based on these empirical results; how this theory can be used to make predictions on state of the art models, including, e.g., how one can predict trends in the quality of state of the art models without even access to training and testing data, how it can be used to perform model diagnostics, and how it can be used to improve training. It will also cover how these approaches relate to traditional machine learning theoretical approaches to neural networks and how they can help to bridge the large gap between theory and practice in the area.

Syllabus

A starting point is provided by https://www.stat.berkeley.edu/~mmahoney/talks/dnn_kdd19_fin.pdf
which presents a much less mature version of the topics to be covered.

References

Several, including:

https://www.stat.berkeley.edu/~mmahoney/pubs/predicting-trends-NatCom21.pdf

https://www.stat.berkeley.edu/~mmahoney/pubs/htsr_20-410.pdf

Pre-requisites

Basic knowledge of machine learning, e.g., at the graduate student level. Knowledge of statistical mechanics will not hurt, but it will not be assumed. Knowledge of machine learning theory will be helpful but not essential.

Short bio

Michael W. Mahoney is at the University of California at Berkeley in the Department of Statistics and at the International Computer Science Institute (ICSI). He is also an Amazon Scholar as well as head of the Machine Learning and Analytics Group at the Lawrence Berkeley National Laboratory. He works on algorithmic and statistical aspects of modern large-scale data analysis. Much of his recent research has focused on large-scale machine learning, including randomized matrix algorithms and randomized numerical linear algebra, scalable stochastic optimization, geometric network analysis tools for structure extraction in large informatics graphs, scalable implicit regularization methods, computational methods for neural network analysis, physics informed machine learning, and applications in genetics, astronomy, medical imaging, social network analysis, and internet data analysis. He received his PhD from Yale University with a dissertation in computational statistical mechanics, and he has worked and taught at Yale University in the mathematics department, at Yahoo Research, and at Stanford University in the mathematics department. Among other things, he was on the national advisory committee of the Statistical and Applied Mathematical Sciences Institute (SAMSI), he was on the National Research Council’s Committee on the Analysis of Massive Data, he co-organized the Simons Institute’s fall 2013 and 2018 programs on the foundations of data science, he ran the Park City Mathematics Institute’s 2016 PCMI Summer Session on The Mathematics of Data, he ran the biennial MMDS Workshops on Algorithms for Modern Massive Data Sets, and he was the Director of the NSF/TRIPODS-funded FODA (Foundations of Data Analysis) Institute at UC Berkeley. More information is available at https://www.stat.berkeley.edu/~mmahoney/.

Other Courses

Babak Ehteshami BejnordiBabak Ehteshami Bejnordi
speakers-gleyzerSergei V. Gleyzer
speakers-kumarVipin Kumar
speakers-goldbergerJacob Goldberger
Christoph LampertChristoph Lampert
speakers-jingbianYingbin Liang
Xiaoming LiuXiaoming Liu
Liza MijovicLiza Mijovic
William S. NobleWilliam S. Noble
Bhiksha RajBhiksha Raj
Holger Rauhut‪Holger Rauhut
Bart ter Haar RomenyBart ter Haar Romeny
Tara SainathTara Sainath
Martin SchultzMartin Schultz
Adi Laurentiu TarcaAdi Laurentiu Tarca
Emma TolleyEmma Tolley
Michalis VazirgiannisMichalis Vazirgiannis
Atlas WangAtlas Wang
Guo-Wei WeiGuo-Wei Wei
Lei XingLei Xing
Xiaowei XuXiaowei Xu

DeepLearn 2023 Spring

CO-ORGANIZERS

Department of Computer Science
University of Bari “Aldo Moro”

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Summer – 10th International Gran Canaria School on Deep Learning
  • BigDat 2023 Summer – 7th International School on Big Data

Photos by: Ph. Eufemia Lella

Past links
  • DeepLearn 2023 Winter
  • DeepLearn 2022 Autumn
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo