DeepLearn 2023 Spring
9th International School
on Deep Learning
Bari, Italy · April 03-07, 2023
Registration
Downloads
  • Call DeepLearn 2023 Spring
  • Poster DeepLearn 2023 Spring
  • Lecture Materials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
  • Home
  • Schedule
  • Lecturers
  • Sponsoring
  • News
  • Info
    • Accommodation
    • Travel to Bari
    • Code of conduct
    • Visa
    • Testimonials
speakers-gleyzer

Sergei V. Gleyzer

University of Alabama

[introductory/intermediate] Machine Learning Fundamentals and Their Applications to Very Large Scientific Data: Rare Signal and Feature Extraction, End-to-End Deep Learning, Uncertainty Estimation and Realtime Machine Learning Applications in Software and Hardware

Summary

Deep learning has become one of the most widely used tools in modern science and engineering, leading to breakthroughs in many areas ranging from computer vision to natural language processing to physics and medicine. This mini-course will introduce the basics of machine learning and classification theory based on statistical learning and describe two classes of popular algorithms in depth: decision and rule-based methods (decision trees, decision rules, bagging and boosting, random forests) and deep neural network-based models of various types (fully-connected, convolutional, recurrent/LSTM, graph neural networks and transformers). The course will focus on practical applications in analysis of large scientific data, interpretability, uncertainty estimation and how to best extract meaningful features, while implementing realtime deep learning algorithms in software and hardware. No previous machine learning background is required.

Syllabus

  • Introduction to Machine Learning: Theoretical Foundation, Classification Theory
  • Practical Applications and Examples in Sciences and Engineering with Large Scientific Data
  • Tree-based Algorithms: decision trees, rules, bagging, boosting, random forests
  • Deep Learning Methods: theory, loss functions, fully-connected networks, convolutional, recurrent, graph neural networks and geometric deep learning, transformers
  • Fundamentals of Feature Extraction and End-to-end Deep Learning
  • Uncertainty Estimation and Machine Learning Model Interpretations
  • Symbolic Machine Learning
  • Realtime Implementation of Deep Learning in Software and Hardware

References

I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning”. MIT Press, 2016.

G. James et al., “Introduction to Statistical Learning”. Springer, 2013.

A. Géron, “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems”. O’Reilly, 2019.

C.M. Bishop, “Pattern Recognition and Machine Learning”. Springer, 2006.

J.R. Quinlan, “C4.5: Programs for Machine Learning”. Morgan Kaufmann, 1992.

Pre-requisites

None.

Short bio

Sergei Gleyzer is a particle physicist working at the interface of machine learning and physics and astronomy towards more intelligent systems that can extract meaningful information from the data collected by the Large Hadron Collider (LHC), the world’s highest-energy particle physics experiment located at the CERN laboratory, near Geneva, Switzerland and Vera Rubin Observatory in Chile. He is a co-discoverer of the Higgs Boson and founder of several major machine learning initiatives such as the Inter-experimental Machine Learning Working Group and Compact Muon Solenoid experiment’s Machine Learning Forum. Professor Gleyzer is working on applying advanced machine learning methods to searches for new physics, such as dark matter. He also teaches a popular machine learning course at the University of Alabama and is the founder of the Machine Learning for Science (ML4SCI) Open Source Foundation.

Other Courses

Babak Ehteshami BejnordiBabak Ehteshami Bejnordi
speakers-kumarVipin Kumar
speakers-goldbergerJacob Goldberger
Christoph LampertChristoph Lampert
speakers-jingbianYingbin Liang
Xiaoming LiuXiaoming Liu
Michael MahoneyMichael Mahoney
Liza MijovicLiza Mijovic
William S. NobleWilliam S. Noble
Bhiksha RajBhiksha Raj
Holger Rauhut‪Holger Rauhut
Bart ter Haar RomenyBart ter Haar Romeny
Tara SainathTara Sainath
Martin SchultzMartin Schultz
Adi Laurentiu TarcaAdi Laurentiu Tarca
Emma TolleyEmma Tolley
Michalis VazirgiannisMichalis Vazirgiannis
Atlas WangAtlas Wang
Guo-Wei WeiGuo-Wei Wei
Lei XingLei Xing
Xiaowei XuXiaowei Xu

DeepLearn 2023 Spring

CO-ORGANIZERS

Department of Computer Science
University of Bari “Aldo Moro”

Institute for Research Development, Training and Advice – IRDTA, Brussels/London

Active links
  • DeepLearn 2023 Summer – 10th International Gran Canaria School on Deep Learning
  • BigDat 2023 Summer – 7th International School on Big Data

Photos by: Ph. Eufemia Lella

Past links
  • DeepLearn 2023 Winter
  • DeepLearn 2022 Autumn
  • DeepLearn 2022 Summer
  • DeepLearn 2022 Spring
  • DeepLearn 2021 Summer
  • DeepLearn 2019
  • DeepLearn 2018
  • DeepLearn 2017
© IRDTA 2021. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_74880351_91 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Powered by CookieYes Logo